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SetD = {5, Y2y e ey Yns Ui ee oy s Wiy, W | 0 (82407 +
Wil + 305 A < (C)/(7)}. In addition, the compact set D
can be kept arbitrarily small by adjusting A; 1, Ai 2, 0i.1, .2, k;, and
GE=1,...,n,5 =2,...,n).

Case iii): Sp € Ks, and S, ¢ K, for p # ¢. From the proof of
Cases i) and ii), we can easily prove this case. Define subsystems con-
sisting of 5, € K's, and S, ¢ Ks, as ¥, and X, respectively. In ad-
dition, Lyapunov candidate functions for ¥, and ¥, are defined as V),
and Vj, respectively. Thus, the Lyapunov candidate function (17) can
be rewritten by V' = V,,+V,. The boundedness of all signals of the sub-
system X, is proved using V}, and the proof of Case i). From the proof
of Case ii), using V7, all signals of the subsystem ¥, are semiglobally
uniformly bounded. Therefore, we can show that all closed-loop sig-
nals of the total system are semiglobally uniformly bounded.

Accordingly, from all three cases, all signals of the closed-loop
system are semiglobally uniformly bounded. This completes the proof
of Theorem 1.
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A Novel Geometric Approach to Binary Classification
Based on Scaled Convex Hulls

Zhenbing Liu, J. G. Liu, Chao Pan, and Guoyou Wang

Abstract—Geometric methods are very intuitive and provide a theo-
retical foundation to many optimization problems in the fields of pattern
recognition and machine learning. In this brief, the notion of scaled convex
hull (SCH) is defined and a set of theoretical results are exploited to
support it. These results allow the existing nearest point algorithms to be
directly applied to solve both the separable and nonseparable classification
problems successfully and efficiently. Then, the popular S-K algorithm
has been presented to solve the nonseparable problems in the context
of the SCH framework. The theoretical analysis and some experiments
show that the proposed method may achieve better performance than the
state-of-the-art methods in terms of the number of kernel evaluations and
the execution time.

Index Terms—Nearest point problems (NPPs), reduced convex hulls
(RCHs), scaled convex hulls (SCHs), S-K algorithm, support vector
machines (SVMs).

I. INTRODUCTION

Geometry provides an intuitive and theoretical framework for the
solution of many problems in the pattern recognition and machine
learning fields. Support vector machine (SVM) classification is a
typical optimization task that has achieved excellent performance
because of the sound theoretical foundation based on the statistical
learning theory and the clear intuitive geometric interpretation [1], [2].

The geometric properties of SVMs in the feature space have been
pointed out by Bennett and Bredensteiner early through the notion of
convex hull for the separable case and the notion of reduced convex
hull (RCH) for the nonseparable case [3] and [4]. Some important geo-
metric ideas have also been investigated by Crisp and Burges [5]. All
these enlighten us to propose some efficient geometric algorithms to
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the SVM classification problems [6], [7]. However, almost all the ex-
isting geometric algorithms (with the exception of [8]-[11]) are suit-
able only for solving directly the separable problems. These geometric
algorithms have been generalized to solve indirectly the nonseparable
case through the use of the technique proposed by Friess and Harisson
[12]. However, this technique is equivalent to a quadratic penalty factor,
increasing the complexity due to the artificial expansion of the dimen-
sion of the input space. In [8]-[10], the authors derived efficient geo-
metric algorithms for the nonseparable problems based on the RCH.
These algorithms transformed the nonseparable problems to the nearest
point problems (NPPs) between RCHs and reduced the complexity
from combinatorial to quadratic.

Inspired by the notion of RCH, a notion of scaled convex hull (SCH)
is introduced in this brief, through which the nonseparable classifica-
tion problems can be transformed to the separable ones. The develop-
ment and proof of several propositions about the SCH allows the use
of the popular S-K algorithm (initially proposed for solving the NPP
between convex hulls [7]) to solve the nonseparable classification prob-
lems. The derived geometric algorithm, involving the SCH, has almost
the same computational cost as the original S-K algorithm.

The rest of this brief is organized as follows. First, some preliminary
material on the SVM paradigm and the RCH has been presented in
Section II. Then, the notion of SCH is defined and the connection to the
nonseparable SVM classification problems is presented in Section III.
The S-K algorithm is then rewritten in the context of the SCH frame-
work in Section IV. Finally, the results of the application of the new
method solving certain classification tasks are presented in Section V.

II. SVM AND REDUCED CONVEX HULLS

Given the training data, the SVM training algorithms find the op-
timal separating hyperplane between two classes of training samples:
f(a) = wTw+t, where w is the weight vector and ¢ is the bias. The op-
timal separating hyperplane maximizes the margin, i.e., 2/||w||? (or, al-
ternatively, minimizes ||w/||*) [2], to obtain good generalization ability.
This classification task, expressed in its dual form, is equivalent to
finding the pair of nearest points between the convex hulls (each is gen-
erated by the training patterns of each class), and the maximum margin
(optimal separating) hyperplane 1) bisects, and 2) is normal to the line
segment joining these two nearest points [3]. A convex hull generated
by training patterns of one class X = {z;, 2, € R,i =1,2,...,k}
is defined as

k k

convX = {w Tw = Za,iwi,() < a,i,Za,,' =1l,z; € X} . (D

=1 =1

For the nonseparable problems, i.e., the convex hulls of the patterns
in the feature space are overlapping, the framework of RCH is intro-
duced to transform them to the separable ones [9].

Given the patterns of one class X = {x;, z; € R'i=1,2,..., k},
the RCH of the set X (denoted by R(X, it)), with the additional con-
straint that each coefficient @; is upperbounded by a nonnegative
number 1 < 1, is defined as follows (see [3]):

k k

R(X,p)= {w : u):Zaimi,Zm:l,mi eX,0<a; S//} @)
=1 i=1

It can be seen that the smaller the p, the smaller size of the RCH, in
Fig. 1(a). So by a suitable selection of the reduction factor y, the ini-
tially overlapping convex hulls can be reduced to become separable. It
is well known that for the nonseparable case finding the maximum soft
margin between two classes is equivalent to finding the pair of nearest
points between two RCHs by a suitable selection of the reduction factor

[5].
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The pair of nearest points between convex hulls depend directly on
their extreme points which are some points of the set X for the sepa-
rable case. However, for the nonseparable case, each extreme point of
the RCHs is a reduced convex combination of the original points, thus
a direct employment of a nearest point algorithm is impractical. In [9],
the authors exploited some results in the RCH and applied them to the
S-K algorithm leading to an elegant and efficient solution to the general
SVM classification tasks. It was shown that: 1) each extreme point of
the RCH is a combination of a specific number ! = [1/u] of the orig-
inal points, with specific coefficients that are analytically computed,
and 2) it is not the extreme RCH points themselves that are needed, but
rather their projections onto a specific direction. However, to compute
the minimum projection, the extra cost of sorting the projections of all
the original points in the ascending order and combining appropriately
the / smallest of them is required. It can be seen that the complexity
increases as pt gets smaller. Besides, the number of extreme points and
the shape of the RCH vary with the change of the parameter y¢. To ad-
dress these difficulties, a new method for reducing the convex hull is
proposed in the next section.

III. ScALED CONVEX HULLS

Definition: The SCH of the set X = {a;,z; € R =
1,2,...,k} with the nonnegative reduction factor A < 1, denoted as
S(X, ), is defined as

k
S(X,A) = {w Tw = )\Z(l,‘xi + (1= X)m,
=1

k
> ai=1,0<a < 1}. 3)
=1

It can also be rewritten as

k
a;(Ax; + (1= \)m),

=1

S(X,\) = {w T =

k
Y oai=10<a < 1} @)

=1
where m = (1/k) 2%, «;, the mean value of all original points, is
called the centroid point of conv.X.

1) The Geometric Interpretation of the SCH: For a given A, each
point AY" . a;x; + (1 — A)m of S(X,A) is the convex combination
of the centroid m and the point Zle a;x; of the original convex hull
convX,i.e., the point A}~ a;z; + (1 — A\)m of the SCH lies on the
line segment connecting Zle a; x; and the centroid m [Fig. 1(b)]. In
fact, the ratio of the distance between A ) °. a;x; + (1 — X)m and the
centroid m to the distance between Z:”: | @ix; and the centroid m is
the constant A. So the shape of the SCH S( X, A) is the same as that of
the original convex hull conv X . (This is why we call it SCH.) It seems
that S(X, \) is obtained by “reducing” convX towards the centroid
m by A which controls the size of the SCH. Furthermore, the reduction
factor A can be set different for each class, reflecting the importance of
each class.

For convenience, we denote the “reduced” point Ax; + (1 — A)m as
xzyand X' = {2} : i = 1,2,...,k}. Then, the SCH can be rewritten
as

k k
S(X, ) = {w : w:Za,';L',i,Za;:l,ﬂgaigl,arieX’}
=1 =1

=convX'. )
From (5), SCH S(X, \) can be seen as a convex hull generated by
the reduced points ;s which are the candidate extreme points of the
SCH, so it can also be denoted as convX'. Thus, the candidate extreme
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~

Aw +zl —-A)m

(a) (b)

Fig. 1. Geometric interpretation of the RCH and the SCH with respect to the
same sample set: (a) RCH (the smaller one) with ¢« = 1/2; and (b) SCH (the
smaller one) with A\ = 1/2. While each (extreme) point of the RCH is the re-
duced convex combination of I = [1/ ] (distinct) ones of the original training
set, each (extreme) point of SCH is the convex combination of the centroid and
a corresponding (extreme) point of the original convex hull by the reduction
factor A.

pointsetof S(X, \)is X' = {a} = Ae;+(1-N)m,i = 1,2,....k},
having the same number of elements as the original set X when A # 0.

In this way, the initially overlapping convex hulls can be reduced to
become separable by a suitable selection of A. Once separable, we can
find the maximum margin classifiers between the two SCHs through
the use of the nearest point algorithms. This viewpoint is the same as
the RCH framework in [9] and [11], so it can be seen as a variation of
SVMs. But being different from the RCH, the SCH has the same shape
and number of candidate extreme points as the original convex hull,
resulting in the easier research of the nearest point pair between the
SCHs. The comparison of an RCH and an SCH is illustrated in Fig. 1.

Next, we will prove some propositions useful to the SCH notion and
form the basis for the development of the novel algorithm proposed in
this brief.

Proposition 1: When A = 1, SCH S(X, \) is the original convex
hull; and when A = 0, it becomes the centroid.

Proof: Substituting A = 1 and A = 0 into (3), respectively, we

can get the result.

Proposition 2: The SCH and the original convex hull have the same
centroid.

Proof: We know that the SCH S(X, \) is generated by the set

X'={2 =Av; +(1—=X)ym,i =1,2,...,k}. So the centroid of the
SCH is

; &
1 ;1 .
z Zl, =z Z(A”E‘ +(1=X)m)

=1 =1
_1 - Aei — A+ 7
=7 i m—+m
=1
1 e 1<
= z;/\:vi _)\E ;h +m
=m 6)

i.e., the SCH and the original convex hull share the same centroid.
Proposition 3: The SCH S(X, A) can be rewritten as

k k
S(X, )= w:w= Zb;x,;,Zb,- =1,
=1 =1

i it

v

L EX S (D)
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Proof: By the definition of SCH, each point of S(X, X) can be
written as &
w =\ Za‘i‘“ + (l — )\)m

=1

€Ty
1

7

I‘»
-y (m Pty A)) v ®)
=1 .

Let b; = Aa; + (1 — \)/k, then we get the result.

From the above proposition, it can be seen that when % tends to in-
finity, the SCH converges to the RCH if A = p, hence the classifier
based on the SCH converges to that based on the RCH.

Suppose 7 = {(x1,y1), (#2,92), ..., (¥n,yn)} is the training set
for a binary classification problem where x; is the training pattern be-
longing to one of two classes and y; € {—1,1} is its corresponding
class label (i = 1,...,n). In the following proposition, we will give a
sufficient condition that makes the two SCHs generated by the patterns
of each class separable. Before giving the condition, we first define
some notations that have the same meaning in the following sections

k

k
I)\Zai.’bi-k(l—)\)
=1

I ={ityi=1}1 ={i:y;=—1}
Xt ={wiriel", X ={n;:i€1}

XV ==X i +Q-XNmtiel",
1
mT = s ; w,;,n+ = ’I+|
X '={ai=Xei+(1=XNym™ i€,
_ 1 _ _
m = — Z ri,n = |I |
e
S(X+,/\): Z a;xh s ah € X+/,O <a; <1, Z a;=1
iel+ ielt
=conv(X™)
S(X7, )= Z aivh st € X7 0<a; <1, Z a; =
iel— iel—
=conv(X ")
r= ||m+ - m_H ,rT = max ’ z; — m+H
el t
7 = max ||¢1 - nf”
i€l—
7“:' = max | l/l — m+H , 7, = max | l/l — m_” . ©)]

el + i€l
Proposition 4: Convex hulls S(X ™, \) and S(X ~, ) are separable
if T 4+ X <
Proof: By construction, convex hull S(XT,\) is contained
within the r7T-radius ball centered in m™ [see Proposition 2 and
the definition of % in (9)], and S (X7, ) is contained within the
r, -radius ball centered in m ™~ in Fig. 2. Two balls are nonoverlapping
if the Euclidean distance between their means is larger than the sum
of their radius.
We can compute

rT = max |2} — m™|| = max || Aa; + (1 — Mt — |
iel+ el t
= Amax ||a; — m ™| (10)
i€l t

and similarly for r;, which completes our proof.
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Fig. 2. Two balls including two SCHs, respectively: two balls are separable if
rfrs <o

3 3.5 4 45 5 55 6 6.5 7

Fig.3. Separating hyperplanes based on the RCH for the Iris data with different
s 2 0.8483,0.7,0.5,0.3,0.2,0.1.

In the following theorem, we will give the relation between the
C-SVM with slack variables [2] and SCHs, which opens the road of
applying the nearest point algorithms to the nonseparable problems
through the use of SCHs.

Theorem: The weight vector of the classifier associated with the
SCHs converges to that of the C'-SVM classifier by a suitable selection
of parameters, as the number of training samples tends to infinity.

Proof: The proof is analogous to the RCH case in [5], and can be
easily completed using Proposition 3.

This theorem proves that the weight vector of the separating hyper-
plane associated with the SCHs converges to that of the C'-SVM sepa-
rating hyperplane, but it is not the same case for the biases because the
assumptions used to construct the biases differ. It was pointed out that
it is not a priori evident which assumption for the choice of biases is
the best [3]. Our method can be regarded as an approximate alternative
to construct SVM classifiers.

IV. S-K ALGORITHM FOR NONSEPARABLE TASKS

The so-called S-K algorithm for solving the linearly separable SVM
problems has been presented recently in [7]. One important advantage
of this algorithm is that it involves only candidate extreme points of the
convex hulls. This algorithm is easily generalized to find an £-optimal
separating hyperplane between the SCHs once they are separable.

1) Initialization: set the vector w; to any vector (point) z € X’ and

w2 to any vector (point) x € X .
2) Stopping condition: find the vector x, closest to the hy-

perplane as ¢ € arg min m(x)), where m(z)) =
il tur—

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 7, JULY 2009

-2

1 ! 1 L 1 1 1

3 3.5 4 45 5 5.5 6 6.5 7

Fig.4. Separating hyperplanes based on the SCH for the Iris data with different
A :0.8483,0.7,0.5,0.3,0.2,0.

(a8 = wa, w1 — wa)/||wi — wol|| for i € I'T and m(a) =
(@) — wi,wa —w1)/|lwy — wa| fori € I,
If the e-optimal condition ||w1 — w2|| — m(x}) < ¢ holds, then

the vector w = wy — wo and b = (|Jw:||* = [Jw2]|*)/2 give the
e-solution; otherwise, go to step 3).

3) Adaptation: if z, € X', set w5 = wo and com-
pute wi® = (1 — ¢q) * wi + ¢ * x;, where ¢ =
min(l, {wy — wa, w1 — x)/||lwi — zi||*); otherwise, set
wi™™ = wq and compute w5 = (1 — q) * wa + q * 2}, where
¢ = min(1, (ws — wi,ws — )/ |Jws — x4 ||°).

Next, we mainly compare our algorithm to other algorithms with
respect to step 2) which is the main difference in these algorithms. From
step 2), it is not the extreme SCH points that are needed, but rather
their projections onto a specific direction. Once all ;s are computed
in advance, the new algorithm has the same complexity as the original
S-K algorithm in [7], because the candidate extreme sets X ™ and X '
of the two SCHs have the same number of elements as those of the
original convex hulls.

The new algorithm is simpler than the RCH-based S-K algorithm
proposed in [9] and [11], because the extra cost of sorting the projec-
tions of all the original points in X T and X ™ in the ascending order and
combining appropriately the specific number of the smallest of them
is required to compute the minimum projection for the RCH case. Be-
sides, the new algorithm’s complexity does not change with the change
of the reduction factor A.

Since the vectors of the feature space are presented in the form of
norms and inner product in the above algorithm, the proposed algo-
rithm is easily extended to nonlinear problems through the so-called
“kernel trick” technique. But as the mapping is usually unknown, it
is difficult to describe the centroid and extreme points in the feature
space, resulting in the computational cost of performing the norms and
inner products in the S-K algorithm. For computational simplicity, we
use a heuristics: directly mapping s to the feature space. Another
important advantage of this heuristics is that it can keep the sparsity of
the solution coefficients.

1) Kernel SCH-SK [7]:

1) Initialization: set ov;;, = 1 for any i1 € I+, o, = 1foranyi; €
I, and the remaining multipliers o, = 0,7 € [ = IT U I~ .Ini-
tialize the cache of dot products corresponding to the multipliers
a; as A = K(a},.2},), B = K(a},.2},),C = K(«},,2},),
D; = K(a},,2}), B = K(al,,%7),i € I.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 12, 2009 at 05:00 from IEEE Xplore. Restrictions apply.
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TABLE I

RESULTS ACHIEVED FOR EACH ALGORITHM

Dataset Algorithms  Training Patterns  Parameters Success rate (%) Kernel evaluations  Time (sec)
Diabetes SMO-K 400 o =100,C = 100 76.70+1.8 1.5 x 10° 8.4
Diabetes RCH-SK 400 o =100, = 0.0075 76.30+1.8 7.0 x 10° 6.5
Diabetes SCH-SK 400 o =100,A=0.94 76.80+1.8 4.3 x 10° 4.6
Thyroid SMO-K 160 o = 30,C = 1000 94.6+2.1 8.3 x 10* 1.7
Thyroid RCH-SK 160 o =30,u=0.05 94.7+2.2 4.1 x 10* 1.0
Thyroid SCH-SK 160 0c=30,A=0.84 94.6+2.0 3.3 x 10* 1.0
Waveform SMO-K 400 o =20,C = 1000 89.20+0.5 2.2 x 108 65.0
Waveform RCH-SK 400 o =20,p=0.02 88.30+0.8 1.5 x 10° 37.0
Waveform SCH-SK 400 o =20,\=0.62 88.20+0.7 1.2 x 10° 29.0
Heart SMO-K 170 o =120,C = 1000 83.9+3.3 2.6 x 10° 1.5
Heart RCH-SK 170 o =120, =0.017 842427 4.7 x 10* 0.9
Heart SCH-SK 170 o =120,A=0.76 83.9+£2.7 3.5 x 10* 0.9

S Flare SMO-K 666 o =30,C = 1000 67.6+1.8 1.0 x 107 30.4
S Flare RCH-SK 666 o =230,t=0.0039 67.6+1.8 2.1 x 108 13.7
S Flare SCH-SK 666 o =30,\A=048 67.5£1.8 1.9 x 10° 10.9
German SMO-K 700 o =10,C = 3162 76.1£2.2 9.0 x 10° 31.0
German RCH-SK 700 o =10, =0.0052  75.540.5 2.7 x 10° 3.6
German SCH-SK 700 o =10,A=0.78 75.940.5 1.6 x 10° 32
W Cancer SMO-K 500 o = 100,C = 1000 95.6+2.0 8.3 x 10* 44
W Cancer RCH-SK 500 o =100, = 0.02 95.3+2.0 4.1 x 10* 3.7
W Cancer SCH-SK 500 o =100,A =0.05 95.442.0 2.3 x 10* 2.4
Adult SMO-K 16000 o =1000,C = 1000 83.3%+1.5 2.3 x 10® 573.0
Adult RCH-SK 16000 o = 1000, = 0.002 83.2+2.0 1.5 x 107 276.0
Adult SCH-SK 16000 o =1000,A =0.35 83.3£2.0 1.2 x 107 218.0
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2) Stopping condition: find the vector =/ closest to the hyper-

plane as ¢ € arg min m;, where m; = (D; — E; + B
ier+ur—

—C)/VAF+B—-2Cfori €I andm; = (E; — D; + A —
CY/VA+B—-2Cforiel™.

If the =-optimal condition v/ A + B — 2C' — m; < = holds, then
the multipliers o; and bias (B — A)/2 correspond to the =-solu-
tion; otherwise, go to step 3).

3) Adaptation: if ¢ € It, then adapt a; as: a; = a; - (1 — ¢)
+ g 64 for i € IT, where ¢ = min(l,(4 — D
=+ Et - C)/(r/l =+ IX’((D;, ‘L;) - 2- (D[ - Et))) and 6i,i
is Dirac’s delta function; and update cached dot products:
A=4-1-9>+20-q - q D+ K(xj,ap),
C=C-1-¢)+q-E,D;=D;-(1-¢q)+q-K(z},z}),
for¢ € I.

Otherwise, if t € I, then adapt «; as: o; = «; + (1 —
q)+q- 6 fori € I", where ¢ = min(1,(B — E;+ D; —
CY/(B+K (vy, 7;) —2-(Ey— Dy))), and adapt cached dot prod-
ucts B=B- (1 —-q¢)?+2(1—¢q)-q-E: +¢* - K(x}, ),
C=C-(1-¢9)+q-Dy,E;, =E;,-(1—¢q)+q- K(z},z}),
for i € I. Continue with step 2).

The nonlinear decision function is determined as f(x) =

Sier iy K (2], x) + (B — A)/2.

V. EXPERIMENTS

In this section, we did some experiments to verify the theoretical
analysis of the proposed method in Matlab.

A. Comparison of Performance for Linear Problems

In this case, the linear separating hyperplane is used. The Iris data
comes from University of California at Irvine (UCI) Repository of ma-
chine learning databases which have 150 4-D samples belonging to
three classes and each class has 50 samples. For visualization, we chose
only the first 2-D samples of the first two classes. The separating hy-
perplanes obtained by the RCHs with different ;¢ are shown in Fig. 3,
and those by the SCHs with different A are shown in Fig. 4. It can be
seen that small changes in the reduction factor A lead to smaller differ-
ences in the final classifier obtained by the SCHs, so our algorithm is
insensitive to A. The reason may be that the SCH has the same shape as
the original convex hull, so the position of SCH extreme points varies
smoothly with the change of A.

B. Comparison of Performance for Nonlinear Problems

In order to extensively investigate the performance (both in speed
and accuracy) of the new algorithm presented here, several available
test data sets from UCI Machine Learning Repository have been used.
Three different algorithms were trained, tested, and compared: the
modified sequential minimal optimization algorithm presented by
Keerthi et al. [13] (denoted SMO-K), S-K algorithm based on RCH
presented by Mavroforakis er al. [8] (denoted RCH-SK), and the
algorithm presented here (denoted SCH-SK). Each algorithm was
trained and tested for each data set, under the radial basis function
(RBF) kernel K(z,y) = elle=vl?/29% iy order to achieve the same
accuracy referred in the literature [14]. The same validation method
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and the same data realizations are used. The results of the runs are
summarized in Table 1.

The results of the new geometric algorithm presented here, compared
to other two algorithms, are very encouraging: the differences in the
number of kernel evaluations and execution times are noticeable for
the same level of accuracy. The enhanced performance of the proposed
algorithm is due to the fact that the SCHs have the same shape as the
original ones and the extreme points of the SCHs are easier to compute,
resulting in the easier computation of the minimum projection of these
points onto a specific direction. Besides, the candidate extreme points
consider the data distribution (the mean value and the shape) of each
class and the SCH separating hyperplane obtains the maximum margin
between the SCHs, so the proposed algorithm can achieve good gener-
alization ability. Since the SCH extreme points move smoothly towards
the centroid with the change of A and the pair of nearest points depends
directly on these extreme points, the separating hyperplane changes
smoothly. Furthermore, the geometric algorithm presented here is a
straightforward optimization scheme, with a clear optimization target
and always converging to the global minimum.

VI. CONCLUSION

In this brief, a new method (the SCH framework) for reducing a
convex hull is proposed and several theoretical results are presented,
through which the nonseparable classification problems are trans-
formed to the separable ones. As a practical application of the SCH
framework, the popular S-K algorithm has been generalized to solve
the nonseparable classification problems. The derived algorithm pro-
vides a clear understanding of the convergence process and the role of
the parameters used, resulting in a very promising geometric method
of solving the nonseparable classification problems. Furthermore, it
provides an easy way to relate each class with a different penalty
factor, i.e., to relate each class with a different cost. Compared to the
well-known SMO and RCH-SK algorithms, the proposed algorithm
achieves enhanced performance with respect to the kernel evaluations
and time requirements.
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