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1. Introduction 

This paper addresses the familiar problem of predicting with a linear clussijer. The 

instances, for which one tries to predict a binary classification, are N-dimensional real 
vectors. A linear classifier is represented by a pair (w, 0)) where w E RN is an N- 

dimensional weight vector and 8 E Iw is a threshold. The linear classifier represented by 
the pair (w, 0) has the value 1 on an instance x if w * x 2 8, and the value 0 otherwise. 
Each instance x E RN can be thought of as a value assignment for N input variables: 
Xi is the value for the ith input variable Xi. 

In this paper we study the performance of certain families of learning algorithms for 
linear classifiers. We use as a test case monotone disjunctions, which are special linear 
classifiers. The monotone k-literal disjunction Xi, V . . . V Xi, corresponds to the linear 
classifier represented by the pair (w, l/2) where Wi, = . . . = Wit = 1 and Wj = 0 for j $ 

{il,. . . , ik}. For a given disjunction, the variables in the disjunction are called relevant 

and the remaining variables irrelevant. In this paper we are particularly interested in the 

case in which the number k of relevant variables is much smaller than the total number 
N of variables. 

We analyze the algorithms in the following simple on-line prediction model of learn- 

ing. The learning proceeds in trials. In trial t, the algorithm’s current hypothesis is given 

by a weight vector wt and a threshold 8,. Upon receiving the next instance xI the algo- 
rithm produces its prediction j$ using its current hypothesis. The algorithm then receives 
a binary outcome y, and may update its weight vector and threshold to w,+l and dt+l. 
If the outcome differs from the prediction, we say that the algorithm made a mistake. 
Following Littlestone [ 8,9], our goal is to minimize the total number of mistakes that 
the learning algorithm makes for certain sequences of trials. 

The standard on-line algorithm for learning with linear classifiers is the simple Percep- 
tron algorithm of Rosenblatt [ 1.51. An alternate algorithm called Winnow was introduced 

by Littlestone [ 8,9]. To see how the algorithms work, consider a binary vector xt E 

(0, qN as an instance, and assume that the algorithm predicted 0 while the outcome 
was 1. Then both algorithms increment those weights Wt,i for which the corresponding 
input Xt,i was 1. These weights are called the active weights. Neither algorithm changes 

the inactive weights, i.e., the weights Wr,i with Xt,i = 0. This causes the dot product to 

increase as it should, i.e., wt+l . xt > wt 1 xt. The difference between the algorithms 
is in how they increment the active weights. The Perceptron algorithm adds a positive 
constant to each of them, whereas Winnow multiplies each of them by a constant that 
is larger than one. Similarly, if the prediction was 1 and the outcome 0, then the active 

weights are decremented either by subtracting a positive constant or by dividing by a 
constant larger than one. The choice of the constants for the updates, as well as the 
initial weights and thresholds, can significantly affect the performance of the algorithms. 

We call choosing these parameters tuning. 

In addition to the two basic algorithms described above, we wish to study a whole 
class of algorithms that includes the Perceptron algorithm. To be concrete, let r] denote 
the positive constant that is added to or subtracted from the active weights of the 

Perceptron algorithm after each mistake, as described above. This constant is called the 
learning rate. Recall that j$ and yr are the prediction and the correct outcome at trial t. 
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We can now write the weight vector W, of the Perceptron algorithm as 

327 

t-1 

Wt = Wl + c at,jxjT (1) 

j=l 

where wt is the initial weight vector and a,,j = (yj -9j)v. In general, we say a learning 
algorithm is additive if its weight vector can be written in form (1) for some scalar 
coefficients at,j. (The coefficients a,,j for t < j do not appear in ( 1) , and we consider 
them undefined.) Thus, for an additive algorithm, the difference wt - WI is in the 

span of the instances x 1, . . . , x,_~. The Perceptron algorithm has the special property 

that in the representation ( l), a,,j = a,+t,j for all t > j. This property allows for a 
more efficient implementation, as the algorithm can compute the next weight vector 
from the current instance and the last weight vector. However, this is by no means a 
necessary property of additive algorithms in general, and an additive algorithm might 

well store all the examples and allow the coefficient a,,j of the jth instance to change as 
more information is obtained. In particular, the learning algorithm based on the ellipsoid 
method for linear programming [ 131 is an example of such a more complicated additive 

algorithm. 
In contrast, the weight vector wr of Winnow can be written in the form 

(2) 
j=l 

where now Pt,j = exp( (y, - jj!)v) for some positive learning rate v. Thus, we could 

call Winnow an example of multiplicative algorithms. Analogously with the Percep- 

tron algorithm, Winnow has the property pr,j = Pr+t,j for all t > j, which simplifies 

implementation. 
If there is a linear classifier (u, +) such that for all t we have yt = 1 if and only 

if u x, > $, we say that the trial sequence is consistent with the classifier (u. G) 
and say that the classifier (u, @) is a target of the trial sequence. It is easy to tune 

Winnow so that it makes at most O(klogN) mistakes [ 8,101 on any sequence with a 
disjunction of at most k literals as a target. If the tuning is allowed to depend on k, the 
tighter bound 0( k + klog( N/k)) is obtainable. This upper bound is optimal to within 

a constant factor, since the Vapnik-Chervonenkis (VC) dimension [ 2,201 of the class 
of k-literal disjunctions is fi (k + k log( N/k) ) [ 81 and this dimension is always a lower 
bound for the optimal mistake bound. 

Thus, for example, if the number k of relevant variables in the target disjunction is 
kept constant, the number of mistakes made by Winnow grows only logarithmically in 
the total number N of variables. In this paper, we wish to contrast this to the behavior 
of additive algorithms, such as the Perceptron algorithm. For any value k 6 N, we show 

that any additive algorithm can be forced to make at least (N + k - 1) /2 mistakes in 
a trial sequence that has a monotone disjunction of at most k literals as a target. Thus, 
even for a constant k, the mistake bound of any additive algorithm grows at least linearly 
in N. 
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One might also ask whether there are significant differences within the class of 
additive algorithms, when they are applied to learning disjunctions with at most k 

literals. The best upper bound we know for learning k-literal monotone disjunctions 

with the Perceptron algorithm is 0( kN) mistakes, which comes from the classical 

Perceptron Convergence Theorem [ 41. We also show that the Perceptron algorithm in 
its basic form can make 2k( N - k + 1) + 1 mistakes, so the bound is essentially tight. 
On the other hand, it is possible to construct an additive algorithm that never makes 

more than N + 0( klog N) mistakes. Thus, one can save at least a factor k by choosing 
the coefficients at,j in ( 1) in a more sophisticated manner than done by the Perceptron 
algorithm. However, this is only a minor improvement. Our lower bounds show that 
when k is small, then the mistake bound of any additive algorithm is exponential in the 
optimal mistake bound (in this case essentially the VC dimension). 

The lower bounds for additive algorithms and for the Perceptron algorithm are based 
on an adversary argument. To show that the advantage of Winnow is not just an artifact 

of the adversarial learning model we performed some simple experiments. We found 

that with random data, too, the number of mistakes made by the Perceptron algorithm 
increases as a function of N much faster than the number of mistakes made by Winnow, 
when k is kept as a small constant. 

The difference in the performances of the algorithms points out that the multiplicative 
algorithms have a different bias in their search for a good hypothesis. Intuitively, Winnow 

favors weight vectors that are in some sense sparse, and wins if the target weight vector is 
sparse (k < N in the disjunction case). If the target weight vector is dense (k = CI( N) 
in the disjunction case) and the instances are sparse (few non-zero components), the 

advantage of Winnow becomes much smaller. Note that if it is known that k is close 

to N, Winnow can also be tuned so that it simulates the classical elimination algorithm 
for learning disjunctions [ 191. In this case it makes at most N - k mistakes for k literal 
monotone disjunctions but is not robust against noise. 

We introduce the details of the on-line prediction model and the algorithms we 
consider in Section 2. Section 3 gives our adversarial lower bound constructions for the 

class of additive algorithms. In Section 4 we show that the Perceptron algorithm is not 
the best additive algorithm for our problem. Our experimental results are presented in 
Section 5. In Section 6 we discuss some open problems and point out possible extensions 
to deal with noisy data and more general concept classes. 

2. The prediction model and algorithms 

2.1. The basic setting 

We use a pair (u, $) to represent a linear classijer with the weight vector u E IF?” 

and the threshold I/. The classifier represented by (u, $) is denoted by QU,,+ and defined 
for x E RN by Q=,+(x) = 1 if u . x 2 I) and a,,+(x) = 0 otherwise. We are mostly 
concerned with the special case x E (0, l}N. 

An N-dimensional trial sequence is a game played between two players, the learner 
and the teacher. For the purposes of the present paper, we restrict ourselves to learners 
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that predict using linear classifiers, in a manner we shall soon describe in more detail. 
The game has I rounds, or trials, for some positive integer 1. In a trial sequence, trial t 
for t = 1) . . . , I proceeds as follows: 

(i) The learner chooses its hypothesis ( wr, f9,>, with wf E RN and Bt E IR. 
(ii) The teacher presents the instance xf E (0, 1)“‘. 

(iii) The learner’s prediction is now defined to be 9, = (Pw,,o, ( x,). 
(iv) The teacher presents the outcome yt E (0, 1). 

After the last trial, the teacher must present a target (u, $), with u E IX”’ and I/ E R, 

such that a,,*(~,) = y, for all t. The goal of the learner is to minimize the number 
of mistakes, i.e., trials with yt # j$. The teacher, on the other hand, tries to force the 

learner to make many mistakes. 
This worst-case model of prediction, with an adversarial teacher, can be justified by 

the fact that there are algorithms that can be guaranteed to make a reasonable number 
of mistakes as learners in this model. We soon introduce two such algorithms, the 

Perceptron algorithm and Winnow, and their mistake bounds. The model could be made 
even more adversarial by allowing the teacher a given number of classi$cation errors, 

i.e., trials with @,,g(x,) # yr. On the other hand, we often restrict the teacher by 
restricting the target. In this paper we consider the case where the target is required to 
be a monotone k-literal disjunction, i.e., to have + = l/2 and II E (0, l}N with exactly 

k components ui with value 1. 

An on-line linear prediction algorithm is a deterministic algorithm that can act as the 
learner in the game described above. A general on-line prediction algorithm would be 
allowed to choose as its hypothesis any mapping from (0, l}‘v to (0, 1) instead of a 
linear classifier. For the class of on-line linear prediction algorithms to be less powerful 

than the full class of on-line prediction algorithms it is essential that the learner is 
required to fix its tth hypothesis (wt,6,) before the tth instance xr is given. Otherwise, 
the learner could run a simulation of any on-line prediction algorithm and at each trial 
choose its hypothesis to be either the constant threshold function (0, -1) or (0, 1) 
depending on what the prediction of the simulated algorithm would be on the instance 

xt. This would achieve the power of an arbitrary on-line prediction algorithm while 
nominally using linear classifiers as hypotheses. 

We use the term trial sequence for the sequence S = ( (XI, yt ) , . . . , (x[, ye) ) that 
gives the teacher’s part of the game. Given a fixed deterministic learning algorithm, the 
learner’s part is completely determined by the trial sequence. 

2.2. The Perceptron algorithm and Winnow 

Both for the Perceptron algorithm and Winnow, the new hypothesis (w,+I ,6,+,) 
depends only on the old hypothesis (w,, 19,) and the observed instance xt and outcome 
yr. We call this dependence the update rule of the algorithm. In addition to the update 
rule, we must also give the initial hypothesis (WI, 191) to characterize an algorithm. The 

most usual initial weight vectors WI are of the form wt = (a,. . . , a) for some scalar 
a E R. Note that the definition of a linear on-line prediction algorithm allows the new 

hypothesis (w,+t,8,+1) to depend on earlier instances xi and outcomes yi, i < t, and 
there are indeed some more sophisticated algorithms with such dependencies. 
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The Perceptron algorithm and Winnow are actually families of algorithms, both pa- 
rameterized by the initial hypothesis and a learning rate 7 > 0. To give the update rules 

of the algorithms, let us first denote by gf the sign of the prediction error at trial t, 
that is, (+, = 9, - y,. In their basic forms, both the Perceptron algorithm and Winnow 

maintain a fixed threshold, i.e., 0, = 131 for all t. Given an instance xt E (0, l}N, the 
sign gy, and a learning rate r], the update of the Perceptron algorithm can be written 
componentwise as 

Wr+l,i = Wt,i - rtorxr,i 

and the update of Winnow as 

(3) 

Wf+l,i = W,ie 
-WlX,,i 

(4) 

Note that this basic version of Winnow (the algorithm Winnow2 of [ 81) only uses 

positive weights (assuming that the initial weights are positive). The algorithm can be 
generalized for negative weights by a simple reduction [ 81. See Littlestone [ 91 and 
Auer and Warmuth [ 1 ] for a discussion on the learning rates and other parameters 
of Winnow. Here we just point out the standard method of allowing the threshold to 

be fixed to 0 at the cost of increasing the dimensionality of the problem by one. To 
do this, each instance x = (xl,. . . ,xN) is replaced by x’ = (1,x1,. . . .xN). Then 
a linear classifier (w, 0) with a nonzero threshold can be replaced by (w’, 0) where 

w’ = (-8,wt,.. . , WN). This useful technique gives a method for effectively updating 
the threshold together with the components of the weight vector. 

It is known that if the target is a monotone k-literal disjunction, Winnow makes 

0( k log N) mistakes [ 81. There are several other algorithms that make multiplicative 
weight updates and achieve similar mistake bounds [ 91. The best upper bound we know 

for the Perceptron algorithm comes from the Perceptron Convergence Theorem given, 

e.g., by Duda and Hart [4, pp. 142-1451. Assuming that the target is a monotone k- 
literal disjunction and the instances x, E (0, l}N satisfy Cr&,i < X for some value 
X, the bound is 0( kX) mistakes. (Note that always X f N.) In Section 4 we show 

that this bound can be tight. We give an adversary strategy that forces a version of the 
Perceptron algorithm to make a( kN) mistakes when learning k-literal disjunctions. 

As Maass and Tut&i [ 131 have pointed out, several linear programming methods 
can be transformed into efficient linear on-line prediction algorithms. Most notably, 
this applies to Khachiyan’s ellipsoid algorithm [6] and to a newer algorithm due to 
Vaidya [ 181. Vaidya’s algorithm achieves an upper bound of 0( N* log N) mistakes 
for an arbitrary linear classifier as the target when the instances are from (0, 1)‘. The 

Perceptron algorithm and Winnow are not suitable for learning arbitrary linear classifiers 
over the domain (0, l}N. Maass and Turin show that in the worst case the number of 
mistakes of both algorithms is exponential in N. The proof of the 0( fl log N) mistake 
bound for general linear classifiers is based on first observing that arbitrary real weights 
in a linear classifier can be replaced with integer weights no larger than O(NocN)> 
without changing the classification of any point in (0, l}N. For monotone disjunctions, 
all the weights ui and the threshold tJ can directly be chosen from (0, 1,2}, which leads 
to the better bound of 0( N log N) mistakes. 
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In what follows we assume that the arithmetic operations of the various algorithms 
can be performed exactly, without rounding errors. 

2.3. Additive algorithms 

The main results of this paper are lower bounds for the class of additive algorithms. 

Definition 1. A linear on-line prediction algorithm is additive if for all t, the algorithm’s 

tth weight vector wt can be written as 

t-1 

Wt = Wl + C at,jXj 

,j=l 

(5) 

for some fixed initial weight vector WI and for some coefficients at,j E Iw. 

As we are considering on-line prediction algorithms, the coefficients at,j in (5) of 
course depend only on the instances xi and outcomes yi for i < t. 

The Perceptron algorithm is additive. By comparing (3) and (5) we see that we can 

take ar,j = -vffj for the Perceptron algorithm. 
Consider now Winnow with initial weights WI = 1, learning rate 7 = In 2, and threshold 

81 = N = 3. Let x1 = (1, l,O), x2 = (l,O, l), and yl = y2 = 1. This is consistent with 

the target ((l,O,O), l/2), and gives w3 = (4,2,2). As the vector w3 -WI = (3,1,1) 
is not in the span of {XI, x2}, we see that Winnow is not additive. 

Recall that a square matrix A E EL”“‘“’ is orthogonal if its columns are orthogonal to 
each other, and orthonormal if it is orthogonal and its columns have Euclidean norm 
1. Thus, for an orthogonal matrix A the product ATA is a diagonal matrix, and for an 

orthonormal matrix ATA = I where I is the m x m identity matrix. 
Consider an orthonormal matrix A E iRWmX”‘. If we think of a vector x E Iw” as 

a list of coordinates of some point in m-dimensional space, then Ax can be consid- 
ered the list of coordinates of the same point in a new coordinate system. The basis 
vectors of the new coordinate system are represented in the original coordinate sys- 

tem by the column vectors of A. Thus, orthonormal matrices represent rotations (and 

reflections) of the coordinate system. Let us write X = Ax. Rotations preserve an- 
gles: is . i = ( Aw)~Ax = wT( ATA)x = w . x. In a situation in which this geometric 
interpretation is meaningful, it would be natural to assume that the choice of coordi- 

nate system is irrelevant, i.e., nothing changes if one systematically replaces x by j; 
everywhere. 

Definition 2. A linear on-line prediction algorithm is rotation invariant if for all or- 
thonormal matrices A E RNxN and all trial sequences S = ((xl, yl), . . . , (xl, yr)), 
the predictions made by the algorith_m given the trial sequence S are the same as its 

predictions given the trial sequence S = ( (Axl, ~1) , . . . , ( Axr, yl) ) . 

In general, being rotation invariant is not necessarily a natural or desirable property 
of an algorithm. For instance, the components xt,i of the instances often represent some 
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physical quantities that for different i may have entirely different units. It is also common 
to scale the instances to make, for example, -1 < Xt,i 6 1 hold for all t and i. In such 
cases, the original coordinate system clearly has a special meaning. However, there are 

several common algorithms that are rotation invariant. 
To discuss the rotation invariance of the Perceptron algorithm and Winnow, we extend 

them to arbitrary real inputs simply by allowing arbitrary real xt,i in the update rules (3) 
and (4). Alternatively, we could have restricted ourselves to rotations that map (0, l}N 
to itself, but that would have left us with just variable renamings, which are not very 
interesting. 

The Perceptron algorithm with zero start vector is rotation invariant. The linear on- 
line prediction algorithm one obtains by applying the reduction given by Maass and 

Turan to the ellipsoid method for linear programming is also rotation invariant. This 
is because the initial ellipsoid used by the algorithm is a ball centered at the origin, 

and the updates of the ellipsoid are done in a rotation invariant manner. If one uses 
Vaidya’s algorithm for the linear programming in the reduction, one gets an algorithm 

that is not rotation invariant. Vaidya’s algorithm uses a polytope that is updated in 
a rotation invariant manner, but the initialization of the polytope cannot be rotation 
invariant. 

Winnow is not rotation invariant, either. To see this, consider a two-dimensional trial 
sequence with xi = ( 1 , 0)) x:! = (0,l) , and yr = yz = 1. Assume that Winnow uses 
the initial weight vector wi = 1 and a threshold such that j$ = 92 = 0. Then after the 

two trials, Winnow has the weight vector w3 = (es, e?) 
matrix 

,4=2-‘/2 ; ‘I . ( > 
After seeing the counterexamples (Axi, 1) and (Axz, ), Winnow has the hypothesis 

i& = (evfi, 1). As w3 is linear in e’r and $3 is not, it i! s clear that Winnow cannot be 
rotation invariant. To be specific, consider the instance x3 = (I, -r) for some r E IR. 
Then ws . x3 = 0, while $3 . Ax3 = r&. Therefore, for some values of r the predictions 
of Winnow are not the same for the rotated and the original instances. 

We have the following general result. 

Consider now the orthonormal 

Theorem 3. If a linear on-line prediction algorithm is rotation invariant, then it is an 
additive algorithm with zero initial weight vector. 

Proof. Let ( wt+l, 8,+1) be the hypothesis of a rotation invariant algorithm after it has 

seen the instances xi, . . . , xt and outcomes yi , . . . ,yt. We claim that wt+i is in the 

subspace spanned by the set X = {xi,. . . ,x,}. It is easy to construct an orthonormal 

matrix A E RNxN such that Axi = Xi for i = 1,. . . , t, and Ax = -x for any vector x 
that is orthogonal to X. Since Axt = xt, the definition of a rotation invariant algorithm 

implies for all x E RN that wt+l . x > Ot+l if and only if wt+i . Ax > 19,+1. Therefore, 
wt+i x = wt+l . Ax for all x. If we choose a vector x that is orthogonal to X, we have 
wr+i . x = wt+l . Ax = -wt+l . x, so wt+l . x = 0. Hence, wt+r is in the subspace spanned 
by X. El 
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Conversely, consider an algorithm that is additive and has zero initial weight vector. 
If further the algorithm’s thresholds Bt and the coefficients a,,j in (5) depend only on 
the outcomes and the dot products xi. Xi, then the algorithm is easily seen to be rotation 

invariant. 

3. Lower bounds for additive algorithms 

Given two vectors p E {-l,l}’ and Q E (-1, ljN, we denote by D(p,q) their 
Hamming distance, i.e., the number of indices i such that pi # qi+ 

In the proofs we use some basic properties of Hadamard matrices. A Hadamard 

matrix is an orthogonal matrix with its elements in { - 1, 1). Multiplying a row or a 
column of a Hadamard matrix by -1 leaves it a Hadamard matrix. Note that if p and 

q are two different rows in an N x N Hadamard matrix, we have D(p, q) = N/2. The 

following definition gives the most straightforward way of obtaining high-dimensional 

Hadamard matrices. 

Definition 4. When IZ = 2d for some d, let H, be the n x n Hadamard matrix obtained 
by the recursive construction H1 = ( I), 

Note that every element in the first column of H, is 1, as is every element in the first 

row. We also have the following property. 

Proposition 5. For n = Zd where d is a positive integer, let H,, be the n x II Hadamard 

matrix defined in DeJinition 4. Then for any vector p E { -1,l)” there is an index j 

such that D (p, q) 2 n/2 holds if q is the jth column of H,,. 

Consider now an additive algorithm and its weight vector given in (5). Its prediction 

on the instance x, can depend only on the dot products wt . x1 and xi. xt where i < t. 

Thus, for an adversary it would be helpful to have for xr two different candidates 

z’ and z” for which these dot products do not differ. This motivates the following 
definition. 

Definition 6. Let B = ((zi,z’,‘), . . . , (zi, zr)), where zi and z:I are in (0, l}N for all 
t. We say that B is a sequence with pairwise constant dot products if for 1 < i < t < 1 

we have z: . zi = z[ . L$’ and z:’ . zi = zi’ ’ zi’. 

Our basic idea is to form a sequence with pairwise constant dot products by choosing 

zi to be the tth row of an 1 x I Hadamard matrix, and z:’ = -zi, but a simple trans- 
formation is necessary to make the instances binary. We also add some padding to the 
instances to handle the case k > 1 efficiently. 

Merely having pairwise constant dot products is not sufficient for generating mis- 
takes. The adversary needs a target (u, $) that is suitably different from the algorithm’s 
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initial hypothesis. To get an idea about this, consider two instance candidates zi and 
zy with, say, wr . zi < wt . zy. Depending on the algorithm’s threshold Br, the algo- 
rithm may either predict j$ = 0 for both xt = zi and xt = zy, predict j, = 0 for 
xr = zi and jt = 1 for xt = zy, or predict j, = 1 for both xr = zi and xy = z:‘. 
If the target (u,$) now is such that u . Z: < fi < u . zi, then by choosing ei- 
ther zi or z:’ for the tth instance xt the adversary can force the algorithm to make 
a mistake regardless of its choice of Br. Note that if the adversary is choosing its 

instances from a sequence with pairwise constant dot products and the algorithm is 
additive, the condition w, . zi 6 wt . z: is equivalent with wr . zi 6 WI . zy and hence 
independent of the updates made by the algorithm. This leads to the following defini- 

tion. 

Definition7. Let B=((z’,,zy),... , (zi, z;‘)), where zi and z:’ are in (0, l}N for all 
t. Let w E I@’ be a weight vector and (II, $> E RN x lR a linear classifier. We say that 
the weight vector w and the classifier (u, @) differ at trial t on the sequence B if either 

w. zi < w ’ z:I and u. zi > Cc, > u . zy, or w. zi > w. z:’ and u. zi < G < u. zy. 

Using the basic idea given above, one can now prove the following result. 

Lemma8 Let B= ((z’l,z’l’>,...,(zl’,z~‘)> bea sequence with pair-wise constant dot 
products. Consider an additive linear on-line prediction algorithm with the initial weight 
vector WI. For any linear classifier (u, +), the adversary can choose a trial sequence 
with (u, (I/) as target and xi E {z$, zy} f or all t in such a way that the algorithm makes 
a mistake at all tn’als at which WI and (u, t,k> differ on B. 

Proof. Consider a trial sequence S = ( (xi, yi), . . . , (xl, yr)), in which yr = @Q,(x,) 
for t = l,... ,E. Assume that for i = l,... , t - 1 we have xi E {zi, zy}. Let (w,,&) 
be the hypothesis of an additive linear on-line prediction algorithm at trial t. Write 
w, = wr + x:,’ at,jxj, and assume that the initial weight vector wi and the target 
(u, $) differ at trial t on the sequence B. 

Consider first the case with WI . zi 6 WI . z:/ and u . zi > Cc, > u . zy. Since B 
has pairwise constant dot products, we also have wt . zi < w, . zr. If 8, < wt . zi, the 
adversary chooses xt = zy. In this case j+ = 1 and y* = 0, so the algorithm makes 

a mistake. Otherwise, the adversary chooses x, = zi, so jr = 0 and yr = 1 and again 
the algorithm makes a mistake. The case WI . zi > WI . z:’ and u . zi < rC, < u . zy is 

similar. 0 

Thus, proving lower bounds is reduced to finding for a given initial weight vector a 
sequence with pairwise constant dot products and a target such that the initial weight 
vector and the target differ sufficiently often. The sequence we use is given in the 
following definition. 

Definition 9. Let N = 2d + k - 1 for some positive integers d and k. Let H2d be the 
2d x 2d Hadamard matrix given in Definition 4, and for t = 1, . . . , 2d, let h, be the tth 
row of H2d. We define BH to be the sequence ( (z{ , zy> , . . . , (zk,, , z!$) > where 
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z:=((~,J+1)/2,...,(hr,*~+1)/2,0 ,..., O), 

z:I= ((W,,l + 1)/2 ,..., (-hr,*d + 1)/2,0 ,..., 0). 

Lemma 10. The sequence BH defined in Dejinition 9 has pair-wise constant dot 
products. 

Proof. Follows from the facts that h,. h,! = 0 for t f t’ and c;, hr,i = - c:, h,,i = 0 
fort22. 0 

The basic idea of the following lower bound proofs is to first find a monotone I- 

literal disjunction that differs with a given initial weight vector at as many trials of BH as 
possible. The adversary can then use the sequence BH to force mistakes, as in Lemma 8. 
This part of the sequence effectively uses only the first 2d variables and chooses exactly 

one of them to be relevant. The adversary is then still free to choose any subset of the 
remaining k - 1 variables as relevant, which makes it easy to produce k - 1 additional 
mistakes in k - 1 additional trials. 

Theorem 11. Let N = 2d + k - 1 for some positive integers d and k. For any additive 
linear on-line prediction algorithm with a zero initial weight vector w1 = 0 there is an 
N-dimensional trial sequence with a monotone disjunction of at most k-literals as a 
target such that the algorithm makes N mistakes on the trial sequence. 

Proof. Let BH = ((z~,z;) ,..., (z$, z!&)) be as in Definition 9. We then have zi,, = 1 

and zy, = Ofort=l,. . . , 2d. Consider now a vector u E (0, l}N with ut = 1 and ui = 0 

for 2 k i < 2d. The components ui for 2d + 1 6 i 6 N are left unspecified for now. The 
constraints we have set for u imply u . zy = 0 < l/2 < 1 =u.z: for all t. We always 

have 0 . zi = 0 . z:’ = 0. Hence, the zero weight vector and the classifier (u, l/2) differ 
on BH at trials 1,. . . , 2d, regardless of how the remaining components u2dfl,. . . , uN 
are chosen. By Lemma 8, the adversary can therefore choose the instances from the 
sequence BH in such a way that an additive algorithm makes a mistake on every one of 
thetrials l,... , 2d when (u, l/2) is the target. 

After the first 2d instances chosen from the sequence BH, the adversary continues the 
trial sequence with an additional k - 1 trials, in which the instances are unit vectors. 
Thus, for t = 2d + l,..., N, we set x~,~ = 1 and xt,i = 0 for i Z t. After seeing the 
algorithm’s tth hypothesis (w,, 0,)) the adversary chooses ut = 0 and yt = 0 if wl.xt 3 et, 
and u, = 1 and y, = 1 otherwise. Then clearly the algorithm makes a mistake at each 
of the trials 2d + 1,. . . , N, and (u, l/2) is a monotone disjunction which at most k 
literais and is consistent with the trial sequence. The total number of mistakes made by 
the algorithm is 2d + k - 1 = N. 0 

Theorem 12. Let N = 2d + k - 1 for some positive integers d and k. For any additive 
linear on-line prediction algorithm there is an N-dimensional trial sequence with a 
monotone disjunction with at most k literals as a target such that the algorithm makes 
at least (N + k - 1) /2 mistakes on the trial sequence. 
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Proof. Let WI be the initial weight vector of the algorithm. Define a vector p E 
{-l,1}2d byp,=-1 ifwt.zi<wt.zy, and p, = 1 otherwise. According to Proposi- 
tion 5, we can choose an index i such that D(p, q) 2 2d-1 when q is the ith column 
of the Hadamard matrix H2d. We now partially define the target weight vector u by 
setting ai = 1 and Uj = 0 when j < 2d and j # i. By the construction of BH, for 
t < 2d we have u . zi = 0 and u . z:’ = 1 when qr = -1, and u . zi = 1 and u . zy = 0 
when q, = 1. Therefore, the vector wt and the disjunction (u, l/2) differ at trial t 
on BH whenever pr Z qt. By Lemma 8, the adversary can therefore choose a trial 
sequence with xt E {zi, zy} for which the algorithm makes at least 2”-’ mistakes at 
trials 1,. . . ,2d. 

Thus, the adversary can force 2d-’ mistakes in the first 2d trials by choosing the 
instances from the sequence Bn. This requires fixing in the target (u, l/2) all the 
components Ui with i < 2d, one component to value 1 and the rest to 0. However, the 
adversary can still choose for each of the remaining k - 1 components either 0 or 1 
completely freely. As in the proof of Theorem 11, this freedom enables the adversary 
to easily force k - 1 additional mistakes in the remaining k - 1 trials, in which the 
instances are unit vectors. The total number of mistakes is therefore 2d-1 + k - 1 = 
(Nfk- 1)/2. El 

By the comments made in Section 2, Theorem 11 gives a lower bound of N mis- 
takes for the ellipsoid algorithm and for the Perceptron algorithm with zero as its initial 
weight vector. Theorem 12 gives a lower bound of (N + k - 1)/2 mistakes for the 
Perceptron algorithm with arbitrary initial weight vectors. Both of the above lower 
bounds for the Perceptron algorithm allow the algorithm to use arbitrary thresholds 
in each trial. In the next section we see that if we assume that the Perceptron algo- 
rithm adjusts its threshold in a natural additive manner we can get a sharper lower 
bound. 

4. Perceptron versus other additive algorithms 

In this section we first give an adversary strategy which forces the Perceptron algo- 
rithm to make Kl( kN) mistakes. For simplicity we assume that the Perceptron algorithm 
starts with weight vector zero and uses a constant learning rate. The basic argument 
of this proof also works for more general versions of the Perceptron algorithm, but the 
formal proof becomes much more complicated. After presenting the lower bound for the 
Perceptron algorithm we show how to construct different additive algorithms that make 
O(N) mistakes when the sample is consistent with a k-literal disjunction. 

In the following we assume that w, = ( wt,c, w,,t, . . . , wt,~) is the weight vector 
of the Perceptron algorithm before trial t. The algorithm receives an instance xr = 
(l,XI,i,..., x,,N) and predicts 9, = 1 if wt. xt > 0 and 9, = 0 otherwise. After receiving 
the correct output y, the weights are updated as wttt = wt + v(yt - j$)x,. If WI = 0 
then Q can be set to 1 without changing the predictions of the algorithm. Note that in 
this version of the Perceptron algorithm, w,,c can be seen as the threshold used in trial 
t, and this threshold is also updated additively. 
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Theorem 13. Let N be the number of variables and m = 2k( N - k + 1) . Then there is a 
trialsequence ((x1,yl),(x2,y2),... , (x,,, y,,) ) with a monotone k-literal disjunction 
as target such that the Perceptron algorithm with the zero initial weight vector WI = 0 
makes a mistake in every trial. 

Proof. Let Xi V . . . V Xk be the target disjunction. Furthermore let n = N - k, so 
m=2k(n+l).WepartitionthemtrialsintogroupsG~,...,G~oflength2(n+1).In 
each group Gi the weight wi is learned, so that after the trials in this group, that is at 
trial t = 2i(n + 1) + 1, we have 

w,,l =...=wr,i=n+l and w,,a = w~,~+I = + . = w,,~ = 0. (6) 

Observe that condition (6) is satisfied for i = 0 before the first trial since wi = 0. 
Within a group Gi we choose instances such that Xj = 0 holds for all j = 1,. . . , k, 

j # i. Thus, Xi is the only relevant variable active during the trials of group Gi. We can 
therefore disregard the other relevant variables, and it suffices to find a trial sequence of 
length 2(n + 1) over n + 1 variables with X1 as target such that 

(i) the Perceptron algorithm makes a mistake in each trial and 
(ii) after all the 2( n + 1) trials the weights of the Perceptron algorithm satisfy 

W2(n+l)+l,l = n + 1 and w~(~+I)+I,o = ~2(~+1)+1,2 = . . . = ~2(~+1)+1,,,+1 = 0. 

The second condition guarantees that (6) holds after the trials in group Gi. 
Such a trial sequence can be constructed as follows. For all trials t = 1, . . . ,2( n + 1) , 

we set x,,t = 0 if t is odd and xt,t = 1 if t is even. For all t we set xy,2 = . . . = xr,n+l = 1. 

As can be seen by induction, we get w,,t = (t - 1) /2 and w,,a = w,,2 = . . . = w~,~+I = 0 

fort = 1,3,... ,2(n + 1) + 1, and w,,t = t/2 - 1 and wt,a = wy,2 = ... = w,,~+I = -1 
for t = 2,4, . . . ,2 (n + 1) . Therefore, w, . xt 2 0 holds for odd and w, . x, < 0 for even 

trials t. Hence, the Perceptron algorithm makes a mistake in each trial, which was our 
first condition. Finally, the second condition is also satisfied since ~2(~+t)+~,t = n + 1 

and w~(~+I)+I,o = w2tn+l)+l,2 = . . . = w~(~+t)+t,~+t = 0. This concludes the proof of the 
theorem. 0 

We now show how any on-line linear prediction algorithm A can be converted into 
an additive algorithm A’ such that on any trial sequence the number of mistakes made 
by A’ does not exceed the number of mistakes made by A by more than N. Before trial 
t, the algorithm A’ first determines the hypothesis (wt,O,) the algorithm A would use 

at trial t. The hypothesis of A’ is then chosen to be (qt, 8,) where qr is the projection 

of wI into the span of {xl,. . . ,x,-t}. The algorithm A’ is by definition additive and 
uses wt = 0 as a start vector. If at a trial t the predictions of A and A’ differ, we have 
xr. qt # xt . w,, and therefore xt is not in the span of {xl,. . . , ~~-1). Thus, whenever 
A’ makes a mistake but A does not, the dimension of the set {xi, . . . , x,} increases by 
one, and this can happen at most N times. 

If we choose the algorithm A in the conversion to be the classical elimination algo- 
rithm with mistake bound N - k [ 193, we obtain an additive algorithm with mistake 
bound 2N- k. For small k, a better additive algorithm is obtained by taking A to be Win- 

now, which yields A’ with a mistake bound N + 0( k log N) . It remains an open question 
whether any additive algorithm can exactly match the lower bounds proven in Section 3. 



338 J. Kivinen et al./Arti$cial Intelligence 97 (1997) 325-343 

5. Experiments 

This section describes some experiments performed on instances drawn from a simple 

random distribution. The purpose of these experiments is to illustrate that behavior qual- 
itatively similar to that predicted by the worst-case bounds can occur on quite natural, 
non-adversarial data. We see that even with our random data, Winnow clearly outper- 
forms the Perceptron algorithm when a large majority of the variables are irrelevant. 
When the proportion of relevant variables is increased, the advantage of Winnow disap- 

pears, and when most of the variables are relevant, the Perceptron algorithm performs 

at least as well as Winnow. 

Our input data distributions are parameterized by the number N of variables and the 
number k of relevant variables. The data is noiseless, i.e., a fixed monotone k-literal 
disjunction can always predict the outcomes correctly. At each trial we give each input 
variable the value 0 with probability 2-‘lk and the value 1 with probability 1 - 2-‘lk. 
The value given to an input variable is independent of the values of other input variables 
and the values of the input variable at previous trials. Hence, the probability of a positive 
instance, i.e., an instance with at least one of the relevant variables set to 1, is l/2. 

Note that for large values of k, our setting leads to instances in which a very large 
majority of the variables have value 0. This emphasizes the point that our random data 

are not meant to simulate any real-world problems. Rather, we use this setting as a 

simple way of producing for arbitrary ratios k/N instance sequences with roughly equal 
numbers of positive and negative instances. There is also a theoretical reason that makes 
this setting interesting. As we have remarked, if at any given trial at most X input 
variables have value 1, then the Perceptron algorithm has a worst-case mistake bound 

of 0( kX) mistakes. The bounds we know for Winnow do not have such a dependency 
on X. Instead, they increase as N increases even if X were kept constant. Hence, we 
expect that combining sparse targets with dense instances and dense targets with sparse 
instances would most clearly show that Winnow and the Perceptron are incomparable 
in the sense that depending on the problem, either algorithm could be better. 

For both the Perceptron algorithm and Winnow, there are certain parameters the user 
can specify. Here we provide the algorithms with a fixed threshold 0 instead of using 

the reduction that allows the algorithms to learn the threshold, too. In addition to the 

threshold, each algorithm needs an initial weight vector wt E RN and a learning rate r]. 
By restricting all the initial weights to be equal, i.e., setting WI = (~1, . . . , WI > for some 
wi E JR, we end up with having to provide the three real-valued parameters 8, v, and 
WI. The algorithms can be quite sensitive to the values of these parameters, and tuning 
them well based only on the data available to the learner is often quite difficult. To 
guarantee a reasonable tuning for both algorithms in our comparisons, we have based 
the tuning on certain additional information that would not be available in an actual 

learning situation. 
For Winnow, we used parameter tunings that lead to known worst-case upper bounds. 

We chose the tuning used by Auer and Warmuth [ 11, which at least in some cases 
leads to better results than Littlestone’s original tuning [ 81. The parameter values to be 
used depend on whether k < N/e holds. (Here e is the base of the natural logarithm.) 
For k < N/e, we take r~ = 0.875, 8 = 0.441, and WI = 2N/5. This guarantees at most 
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Fig. 1. Cumulative mistake counts for Winnow and the Perceptron algorithm with a monotone 20-literal 

disjunction as target. 

3.9kln N + 3.4A + 1.6 mistakes [ 11, where A is the number of attribute errors in the 

instances (hence A = 0 for our experiments). For k 2 N/e, we take 77 = 1, 0 = 0.425, 
and w1 = 0.368, which guarantees at most 1.37N + 3.72A mistakes. Even if one would 
not know the exact value of k beforehand, choosing between these two sets of parameter 

values should be significantly easier than searching through the whole three-dimensional 

parameter space for good values. 
For the Perceptron algorithm, we fixed v = 1, which can be done without loss of 

generality since multiplying all the parameters by a constant leaves the predictions of 

the algorithm unchanged. The remaining parameters 8 and wl were chosen empirically 
for each individual pair (k, N) . 

In our first pair of experiments, we considered the value k = 20 both with N = 200 and 
with N = 400. Fig. 1 shows for both values of N, and both algorithms, how the number 
of mistakes made in trials 1, . . . , t (“total number of mistakes”) increases as t (“trials”) 
increases from 0 to 6000. The curves shown in the figure result from generating for 
both values of N ten different trial sequences and then for each algorithm averaging 
the mistake counts from these ten sequences. For the Perceptron algorithm, we used the 
parameter values 0 = 5.5 and w1 = 1.1 for N = 200, and 0 = 8.7 and WI = 1.2 for 
N = 400. These values were chosen because they gave the least total number of mistakes 
over another set of ten trial sequences generated with the same parameters. From Fig. 1 
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Fig. 2. Cumulative mistake counts for Winnow and the Perceptron algorithm with a monotone (N/2)-literal 
disjunction as target. 

we see how doubling the total number N of variables has very little effect on Winnow, 
when the number k of relevant variables is kept as a small constant. The Perceptron 
algorithm suffers much more from such a doubling. 

In the second pair of experiments, we considered the combinations k = 100 and 
N = 200, and k = 200 and N = 400. Thus, exactly half of the variables were relevant. 
The results are shown in Fig. 2; the curves have the same meaning as in Fig. 1. For both 
values of N, the values 0 = 0.1 and wr = 1.0 turned out to give optimal performance 
for the Perceptron algorithm. Here we see that the Perceptron algorithm actually makes 
fewer mistakes than Winnow, and both algorithms suffer from doubling the number of 
variables (and, hence, the number of relevant variables, too). 

It should be noted that if the trial sequence happens to be such that in every instance 
the number of irrelevant variables with value 1 is at most one, then the Perceptron 
algorithm with parameter values v = 1.0, 0 = 0.1, and wr = 1.0 actually simulates 
the classical elimination algorithm for learning monotone disjunctions. The elimina- 
tion algorithm makes at most N - k mistakes, which for k close to N is a very 
good bound. With the setting we have, for large values of k it is rare to have two 
or more irrelevant variables with value 1 at a trial, so in the experiments summarized 
in Fig. 2 the Perceptron algorithm has performed much like the elimination algorithm 
would. 
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Winnow, on the other hand, can easily be tuned to simulate the elimination algorithm 
exactly (e.g. B = 0.5, WI = 1 .O, and 7 very large). This would lead to improved 
performance in the experiments depicted in Fig. 2, with mistakes counts somewhat 
lower than those of the Perceptron algorithm. However, the algorithm would then be 
extremely sensitive to noise. We therefore felt it reasonable to use the parameter values 
suggested by Auer and Warmuth [ l] which would guarantee good performance even if 
noise were present. 

6. Discussion and open problems 

We have compared two algorithms, the Perceptron algorithm and Winnow, on the 
very restricted problem of learning short monotone disjunctions. A worst-case analy- 
sis shows that the number of mistakes the Perceptron algorithm makes can be forced 
to be linear in the total number of variables, even if the number of relevant vari- 

ables is kept as a small constant. Thus, the bias of the Perceptron algorithm does 
not allow it to take advantage of the number of relevant variables being small. The 
lower bounds actually apply to a very general class of additive algorithms. In con- 
trast, it is known that the number of mistakes Winnow makes is linear in the number 
of relevant variables, but only logarithmic in the number of irrelevant variables [8]. 
Simple experiments show that this effect also occurs outside of our worst-case anal- 

ysis: On seemingly natural random data, the Perceptron algorithm suffers from addi- 
tional irrelevant variables much more than Winnow. Another feature of the worst-case 
bounds, that is to an extent reflected in the experiments, is that the Perceptron al- 
gorithm can take advantage of sparse instances: If only few variables are active in 

the input at any given time but most of the variables are relevant, the Perceptron al- 
gorithm outperforms Winnow at least with the reasonable parameter tuning we have 

used. 
The linear lower bounds for additive algorithms obviously extend to any class that 

contains monotone l-literal disjunctions. On the other hand, Winnow can learn more 
general classes than disjunctions, for example r-of-k threshold functions over N variables 

with 0( kr log N) mistakes [ 81. However, when learning general linear classifiers over 
N binary variables, both Winnow and the Perceptron algorithm can make exponentially 
many mistakes, while certain methods based on linear programming are guaranteed to 
make only a polynomial number of mistakes [ 131. 

Even general linear classifiers are really a very restricted concept class. Algorithms that 
use linear classifiers as their hypotheses can be extended for more general concept classes 

by introducing as new input variables the values of some nonlinear basis functions. This 
is especially attractive for algorithms such as Winnow with a mistake bound that is only 
logarithmic in the number of irrelevant variables. In this case introducing an exponential 
number of basis function leads only to a linear growth in the mistake bounds, assuming 
that only very few of the basis functions are relevant. For example, by giving to Winnow 
as inputs the values of all possible 3N conjunctions we would get an algorithm that would 
learn k-term DNF over N variables with O(kN) mistakes. In this particular case, the 
computational problems caused by the expansion of the input dimensionality seem too 
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difficult to solve efficiently. However, Winnow, and other multiplicative algorithms [ 3, 
2 1 ] with logarithmic mistakes bounds, have been successfully applied when the structure 
of the basis functions allows simulating an exponential number of input variables and 

their weights in polynomial time [5,14,16]. Extending these results is a promising 
direction for new theoretical and empirical work. 

The fundamental question about any learning algorithm is of course its applicability to 
real-world problems. This paper is more aimed at understanding what kind of conditions 
favor either Winnow or the Perceptron algorithm. Finding out how different real-word 

domains are situated on this scale is an entirely different question that remains open for 

empirical study. Related to this is the question of how the algorithms tolerate noise. For 

some empirical studies using artificial noisy data, see Littlestone [ 111. Recently Auer 
and Warmuth [ l] have shown how Winnow can be modified to cope with a situation 
where there is not only noise, but the target is changing over time, as well. 

Our lower bound proofs for additive algorithms are not based on a particular ordering 
of the instances shown to the algorithms. Consider now using the set of instances we 
used in the on-line lower bound proof for training a batch-style additive algorithm. If 

one gives any subset of the instances as the training set, then any additive hypothesis 
would still be wrong on roughly half of the remaining instances. Thus, we see that 

under a distribution that is uniform over the instances used in the bounds, the sample 

size required for obtaining a small expected error also grows linearly in N. A similar 

reasoning leads to linear lower bounds for the PAC model [ 191. On the other hand, 
Winnow with its worst-case upper bounds can be transformed into a batch algorithm that 
achieves a small expected error and PAC style bounds with sample size that is linear in 

k log N. 
The proofs of the worst-case mistake upper bounds for the Perceptron algorithm 

[4] and for Winnow [ 1, lo] can be understood as amortized analysis in terms of a 
potential function. In the case of the Perceptron algorithm, the potential is based on 
the Euclidean distance, in the case of Winnow, on an entropic distance measure. The 
situation is similar also in on-line linear regression [ 71. There the Euclidean distance 

can be used as a potential function for the gradient descent algorithm, which is additive, 
and the relative entropy can be used for an algorithm called the exponentiated gradient 

algorithm, which is multiplicative. In the case of regression, it is particularly clear how 

sparse targets benefit the multiplicative algorithms and sparse instances the additive 
algorithms, both in worst-case mistakes bounds and in actual behavior on random data. 
Further, in the regression case the potential functions can be used not only to analyze 
the algorithms but to actually derive the updates. It is an open problem to devise a 
framework for deriving updates from the potential functions in the linear classification 

case. 
So far, the evaluation of our algorithms on random data is only experimental. How- 

ever, it seems possible to obtain closed formulas for the expected total number of mis- 

takes of the Perceptron algorithm in some thermodynamic limit (see, e.g., [ 17,221). 
We wish to study how these closed formulas relate to the worst-case upper bounds 
and the adversary lower bounds. Studying this behavior will lead to a deeper under- 
standing of how high dimensionality hurts the Perceptron algorithm and other additive 

algorithms. 
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