[
Skip Navigation]
≡
β©οΈ
π£οΈ
-
π
CS 256 Fall 2017
:
Wiki
:
Papers
≡
Welcome
Signin
Create Account
Papers@CS 256 Fall 2017
View
Source
History
Discussion
CS 256 Fall 2017 Group
Create/Find Pages
Group Feed
My Groups
π
Locale: en-US
Page: Papers
β
ποΈ
Page Type:
Standard
Page and Feedback
Page Alias
Media List
Presentation
Url Shortener
Share Wall
Alias Page To:
Page Border:
Solid
Dashed
None
Table of Contents:
Title:
Author:
Meta Robots:
Meta Description:
Meta Properties (such as Open Graph)
One line per property in format: name|content
Header Page Name:
Footer Page Name:
=Neural Network Papers= ==Early Artificial Neuron Proposals== '''McCulloch, W. S. and Pitts, W.''' ((resource-link:McCulloch_A logical calculus of the ideas immanent in nervous activity 1943.pdf|A logical calculus of the ideas immanent in nervous activity)). Bulletin of Mathematical Biophysics. Vol. 5. pp. 115--133. 1943. ==Perceptron Learning Rules== '''Rosenblatt. F.''' ((resource-link:Rosenblatt1958.pdf|The Perceptron: A Probabilitic Model for Information Storage and Organization in the Brain)). ''Psychological Review''. Vol 65. No. 6. pp. 386--408. 1958. '''Littlestone, N.''' ((resource-link:learning_quickly.pdf|Learning Quickly When Irrelevant Attributes Abound A New Linear-Threshold Algorithm)). ''Machine Learning''. Volume 2. Issue 4. pp. 285--318. April 1988. '''Baum, E.'''. ((resource-link:226-the-perceptron-algorithm-is-fast-for-non-malicious-distributions.pdf|The Perceptron-Algorithm is Fast for Non-malicious Distributions)). ''Neural Computation''. Vol 2. pp. 248-260. 1990. '''Kivinen, J., Warmuth, M. K., Auer, P.''' ((resource-link:J38.pdf| The Perceptron algorithm versus Winnow - Linear versus logarithmic mistake bounds when few input variables are relevant)). ''Artificial Intelligence''. pp. 325-343. 1997. ==PAC Learning, PAC Learning Perceptrons== '''Valiant, L.''' ((resource-link:Valiant84.pdf|A Theory of the Learnable)). Communications of the ACM. Volume 27. pp. 1134--1142. 1984. '''Servedio, R.''' ((resource-link:Servedio - COLT 99.pdf|On PAC Learning Using Winnow, Perceptron, and a Perceptron-Like Algorithm)). ''Proceedings of the Twelfth Annual Conference on Computational Learning Theory (COLT)''. pp. 296--307. 1999. ==SVMs, SVM Convex Hull Algorithms== '''Cortes, C and Vapnik, V.''' ((resource-link:SVM Original Paper.pdf|Support Vector Networks)). ''Machine Learning''. Vol 20. pp. 273--277. 1995. '''Crisp, D. and Burges, C.''' ((resource-link:1687-a-geometric-interpretation-of-v-svm-classifiers.pdf|A Geometric Interpretation of nu-SVM Classifiers)). In ''Advances in Neural Information''. Solla, S. A., Leen, T. K., and Muller K. R. eds. MIT Press. Volume 12. pp. 244--250. 1999. '''Franc, V. and Hlavac, V.''' ((resource-link:iterative-algorithm.pdf|An iterative algorithm learning the maximal margin classifier)). ''Pattern Recognition''. Volume 36. pp. 1985--1996. 2003. '''Mavroforakis, M. E., Sdralis, M., and Theodoridis, S'''. ((resource-link:SVM Convex Hulls.pdf|A Novel SVM Geometric Algorithm based on Reduced Convex Hulls)). ''18th International Conference on Pattern Recognition''. pp. 564--568. 2006. '''Liu, Zhenbing, Liu, J. G., Pan, Chao, and Wang, Guoyou'''. ((resource-link:IEEE-J-4-A Novel Geometric Approach to Binary Classification Based on Scaled Convex Hulls.pdf|A Novel Geometric Approach to Binary Classification Based on Scaled Convex Hulls)). ''IEEE Transactions on Neural Networks''. Volume 20. Number 7. pp. 1215--1220. July 2009. ==Experimental Methods - Confusion Matrix, Cross-Validation, etc == '''Pearson, K'''. ((resource-link:pearson1904.pdf|Mathematical contributions to the theory of evolution)). Dulau Co. 1904. Paper credited with introducing Confusion matrix. '''Larson, S. C.''' ((resource-link:larson1931.pdf|The shrinkage of the coefficient of multiple correlation)). ''Journal of Educational Psychology''. Volume 22. Issue 1. pp. 45--55. 1931. Paper often cited as introducing cross-validation. ==Newton Methods and Gradient Descent Results== '''Newton, I.''' ((resource-link:Newton1669.pdf|De analysi per aequationes numero terminorum infinitas)). Circulated as a Letter to the Royal Society and continental mathematicians in 1669. Was rejected for publication by both Cambridge University Press and the Royal Society. Eventually published in 1711 by William Jones. '''Raphson, J.''' ((resource-link:Raphson1690.pdf|Analysis Aequationum Universalis)). Churchill. 1690. '''Debye, P.''' ((resource-link:debye1909.pdf|Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index)). ''Mathematische Annalen''. Volume 67. Issue 4. pp. 535--538. 1909. First paper to present gradient descent.con '''Robbins, H. and Munro, S.''' ((resource-link:robbinmunro1951.pdf|A Stochastic Approximation Method)). ''Annals of Mathematical Statistics''. Volume 22. pp. 400--407. 1951. Early paper analysing stochastic gradient descent. '''Broyden, C. G.''' ((resource-link:Broyden1.pdf|The convergence of a class of double-rank minimization algorithms)). ''Journal of the Institute of Mathematics and Its Applications''. Volume 6. pp. 76--90. 1970. '''Fletcher, R.''' ((resource-link:fletcher1970.pdf|A New Approach to Variable Metric Algorithms)). ''Computer Journal''. Volume 13. Issue 3. pp. 317--322. 1970. '''Goldfarb, D.''' ((resource-link:goldfarb1970.pdf|A Family of Variable Metric Updates Derived by Variational Means)). ''Mathematics of Computation''. Volume 24. Issue 109. pp. 23--26. 1970. '''Shanno, David F.''' ((resource-link:shanno1970.pdf|Conditioning of quasi-Newton methods for function minimization)). ''Mathematics of Computation''. Volume 24. Issue 111. pp 647--656. 1970. '''Nocedal, J.'''. ((resource-link:nocedal1980.pdf|Updating Quasi-Newton Matrices with Limited Storage)). ''Mathematics of Computation''. Volume 35. Issue 151. pp. 773--782. 1980. '''Bertsekas, D. P. and Tsitsiklis, J. N.'''. ((resource-link:BertsekasTsitsiklis2000.pdf|Gradient Convergence In Gradient Methods With Errors)). Siam Journal of Optimization. Volume 10. Issue 3. pp. 627--642. 2000. ==Back Propagation, Multi-Layer Learning Results== '''Rumelhart, D. E., Hinton, G. E., and Williams, R. J.''' ((resource-link:backprop_old.pdf|Learning internal representations by error propagation)). ''Nature''. Vol. 323. pp. 533--537. Oct 1986. '''Arora, R., Basu, A., Mianjy, P., and Mukherjee, A.'''. ((resource-link:Revision1OfTR17-098.pdf|Understanding Deep Neural Networks with Rectified Linear Units)). Electronic Colloquium on Computational Complexity. Revision 1 of Report Number 98. 2017. ==Regularization== '''Ulusoy, I. and Bishop, C. M.''' ((resource-link:Generative versus Descriminative Methods for Object Recognition 2005.pdf|Generative versus Discriminative Methods for Object Recognition)). Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Volume 2. pp. 258--265. 2005. '''Laserre, J., Bishop, C. M., and Minka, T. P.''' ((resource-link:Principled Hybrids of Generative and Discriminative Models 2006.pdf|Resource Description for Principled Hybrids of Generative and Discriminative Models)) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Volume 1. pp. 87--94. 2006. ==Convolutional Neural Networks== '''LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.'''. ((resource-link:lecun-90c.pdf|Handwritten digit recognition with a back-propagation network)). ''Proceedings of the 2nd International Conference on Neural Information Processing Systems''. pp. 396--404. 1992. ==Neural Network Applications== '''Watkins, C. and Dayan, P.''' ((resource-link:Watkins1992.pdf|Q-Learning)). ''Machine learning''. Volume 8. Issue 3--4. pp. 279--292. 1992. '''Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C'''. ((resource-link:bengio03a.pdf|A Neural Probabilistic Language Model)). ''Journal of Machine Learning Research'' Volume 3. pp. 1137--1155. 2003. '''Mnih, V. and Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.'''. ((resource-link:dqn.pdf|Playing Atari with Deep-Reinforcement Learning)). In ''Deep Learning, Neural Information Processing Systems Workshop''. 2013.
X
(c) 2025 Yioop -
PHP Search Engine