S1: {1,3,5}, C = {{1,3,5}}
S2: {1,2}, C = {{1,3,5},{1,2}}
S3: {4,5}, C = {{1,3,5},{1,2},{4,5}}
S4: {5,6}, C = {{1,3,5},{1,2},{4,5},{5,6}}
|S3 - (S1 U S2)| vs |{5,6} - (S1 U S2)|
|{1}| = |{6}|
1 = 1
yes it obeys the inequality
(Edited: 2018-05-02) X={1,2,3,4,5,6}
F={{1,2},{2,3},{4,5},{5,6},{1,6},{1,3,5}}
---------------------
U=X
C=0
---------------------
S1={1,3,5}
U={2,4,6}
C={{1,3,5}}
---------------------
S2={4,6}
U={4,6}
C={{1,3,5},{1,2}}
---------------------
S3={4,5}
U={6}
C={{1,3,5},{1,2},{4,5}}
---------------------
S4={5,6}
U=0
C={{1,3,5},{1,2},{4,5},{5,6}}
---------------------
|S3-(S1 U S2)| = |{4}| = 1
|{5,6} - (S1 U S2)| = |{6}| = 1
Yes it obeys the inequality(Edited: 2018-05-02)
X = {1,2,3,4,5,6}
and
F = {{1,2},{2,3},{4,5},{5,6},{1,6},{1,3,5}}
U = X
C = {}
Round 1
select s = {1,3,5} since it maximizes s ^^ U
U = {2,4,6}
C = {{1,3,5}}
Round 2
select s = {1,2}
U = {4,6}
C = {{1,3,5},{1,2}}
select s = {4,5}
U = {6}
C = {{1,3,5},{1,2},{4,5}}
select s = {5,6}
U = {}
C = {{1,3,5},{1,2},{4,5}, {5,6}}
|S3 - (S1 U S2)| = 1
|{5,6} - (S1 U S2) | = 1
1 is equal to 1, therefore, |Si−(S1∪S2∪...∪Si−1)|≥|S−(S1∪S2∪...∪Si−1)|is obeyed
X = {1,2,3,4,5,6}
F = {{1,2},{2,3},{4,5},{5,6},{1,6},{1,3,5}}
U = X
Iteration1
S1 = {1,3,5}
U = {2,4,6}
C = {1,3,5}
Iteration2
S2 = {2,3}
U = {4,6}
C = {{1,3,5},{2,3}}
Iteration3
S3 = {4,5}
U = {6}
C = {{1,3,5},{2,3},{4,5}}
Iteration4
S4 = {5,6}
U = {}
C = {{1,3,5},{2,3},{4,5},{5,6}}
|S3 - (S1US2)| = 1
(S1US2) = {1,2,3,5}
S3 = {4,5}
|{5,6} - (S1US2)| = 1
So |S3 - (S1US2)| >= |{5,6} - (S1US2)| (1 = 1 ; inequality holds)
(Edited: 2018-05-02)
U=X
C={0}
S1={1,3,5}
U={2,4,6}
C={{1,3,5}}
S2={4,6}
U={4,6}
C={{1,3,5},{1,2}}
S3={4,5}
U={6}
C={{1,3,5},{1,2},{4,5}}
S4={5,6}
U=0
C={{1,3,5},{1,2},{4,5},{5,6}}
|S3-(S1 U S2)| = |{4}| = 1, |{5,6} - (S1 U S2)| = |{6}| = 1